В правильной треугольной призме ABCA1B1C1 AB=2 см, AA1=1 см.
1) Найдите площадь полной поверхности призмы.
площадь основания S1 =AB*AB*sin(pi/3)*1/2 = корень(3)
боковая площадь S2 =AB*AA1*3 = 2*1*3=6
площадь полной поверхности призмы S3 = 2*S1+S2 = 2*корень(3) + 6
2) Найдите площадь сечения призмы плоскостью ACB1.
площадь основания S1 = AB*AB*sin(pi/3)*1/2 = корень(3)
высота треугольника основания h =AB*sin(pi/3)=корень(3)
высота треугольника сечения h1 = корень(h^2+AA1^2)=2
площадь сечения призмы плоскостью ACB1 S4 = S1*h1/h = корень(3) * 2/корень(3) = 2
3) Найдите угол, который составляет прямая AB1 с плоскостью ABC.
тангенс угла = BB1/AB=1/2
угол = арктангенс(0,5)
4) Найдите угол между плоскостями AB1C и ABC.
высота треугольника основания h =AB*sin(pi/3)=корень(3)
тангенс угла = BB1/h=1/корень(3)
угол = арктангенс(1/корень(3)) = pi/6 = 30 градусов
5) Найдите длину вектора AA1-AC+2B1B-C1C
AA1-AC+2B1B-C1C=CА+B1B+СC1=CА+A1A+AA1=CA
ответ - 2 см
6) Докажите, что прямая A1C1 параллельна плоскости ACB1.
прямая A1C1 параллельна прямой АС, лежащей вплоскости ACB1, значит параллельна плоскости ACB1
Sin 90=1 АВ/sin 90 =АС/sin 75 = ВС/sin 15
15/1=ВС/0,6
ВС=15 х 0.6=9
АС=√15²-9² = √225-81 =√144= 12 (см)
Ответ:32√2 см²
Объяснение:
Постройте куб АВСДА₁В₁С₁Д₁ и соедините точки А, В₁ и С.
АВ₁С- сечение, площадь которого надо найти.
Т.к. АВ₁, В₁С и АС - диагонали равных квадратов ⇒АВ₁=В₁С=АС.
АС=√(8²+8²)=√(64+64)=√(64*2)=8√2(см).
S ΔАВ₁С= (АС²√3):4 = 64*2*√2 : 4=32√2 (см²).