<span>полное условие вопроса:
1) Найдите сумму первых восьми членов возрастающей последовательности квадратов простых чисел.
УКАЗАНИЕ: число 1 не является ни простым, ни составным.
2) Составьте одну из возможных формул n-го члена последовательности по первым пяти ее членам:
а) 3,9,27,81,243,...;
б) 9,16,25,36,49,...;
в)1,8,27,64,125,...;
г)2,9,28,65,126,...
Решение:
простые числа не составляют последовательность. Их нельзя записать в виде формулы n-члена
Значит искать придется вручную
</span>
<span>
2) </span><span>формул n-го члена последовательности по первым пяти ее членам:
а) 3,9,27,81,243,...;
a</span>₁=3; a₂=9=3²; a₃=27=3³; a₄=81=3⁴; a₅=243=3⁵
<span>
</span>
<span>
б) 9,16,25,36,49,...;
a</span>₁=9=3²; a₂=16=4²; a₃=25=5²; a₄=36=6²; a₅=49=7²
<span>
</span>
<span>
в)1,8,27,64,125,...;
a</span>₁=1; a₂=8=2³; a₃=27=3³; a₄=64=4³; a₅=125=5³
<span>
</span>
<span>
г)2,9,28,65,126,...
</span>a₁=2=1³+1; a₂=9=2³+1; a₃=28=3³+1; a₄=65=4³+1; a₅=126=5³+1
Рассмотрим следующие уравнения:
1. 2*x + 3*y = 15;
<span>2. x2 + y2 = 4;</span>
3. x*y = -1;
<span>4. 5*x3 + y2 = 8.</span>
<span>Каждое из представленных выше уравнений является уравнением с двумя
переменными. Множество точек координатной плоскости, координаты которых
обращают уравнение в верное числовое равенство, называется графиком уравнения с двумя неизвестными.</span>
График уравнения с двумя переменными
<span>Уравнения с двумя переменными имеют большое многообразие графиков.
Например, для уравнения 2*x + 3*y = 15 графиком будет прямая линия, для
уравнения x2 + y2 = 4 графиком будет являться окружность с радиусом 2, графиком уравнения y*x = 1 будет являться гипербола и т.д.</span>
У целых уравнений с двумя переменными тоже существует такое понятие,
как степень. Определяется эта степень, так же как для целого уравнения с
одной переменной. Для этого приводят уравнение к виду, когда левая
часть есть многочлен стандартного вида, а правая – нуль. Это
осуществляется путем равносильных преобразований.
Графический способ решения систем уравнения
Разберемся, как решать системы уравнений, которые будут состоять из
двух уравнений с двумя переменными. Рассмотрим графический способ
решения таких систем.
Пример 1. Решить систему уравнений:
<span>{ x2 + y2 = 25</span>
<span>{y = -x2 + 2*x + 5.</span>
Построим графики первого и второго уравнений в одной системе
координат. Графиком первого уравнения будет окружность с центром в
начале координат и радиусом 5. Графиком второго уравнения будет являться
парабола с ветвями, опущенными вниз.
Все точки графиков будут удовлетворять каждый своему уравнению. Нам
же необходимо найти такие точки, которые будут удовлетворять как
первому, так и второму уравнению. Очевидно, что это будут точки, в
которых эти два графика пересекаются.
Используя наш рисунок находим приблизительные значения координат, в
которых эти точки пересекаются. Получаем следующие результаты:
A(-2,2;-4,5), B(0;5), C(2,2;4,5), D(4,-3).
Значит, наша система уравнений имеет четыре решения.
x1 ≈ -2,2; y1 ≈ -4,5;
x2 ≈ 0; y2 ≈ 5;
x3 ≈ 2,2; y3 ≈ 4,5;
x4 ≈ 4,y4 ≈ -3.
<span>Если подставить данные значения в уравнения нашей системы, то можно
увидеть, что первое и третье решение являются приближенными, а второе и
четвертое – точными. Графический метод часто используется, чтобы оценить
количество корней и примерные их границы. Решения получаются чаще
приближенными, чем точными.</span>
Напомним свойства степеней с натуральным показателем:
a m • a n = a m+n ; a m : a n = a m−n ( a≠0 ) ; (a m) n = a mn ;
(ab) n = a nb n ; (
a
b
) n =
a n
b n
( b≠0 ) .
Руководствуясь вторым свойством выясним чему равна степень
с нулевым показателем:
a n
a n
= a n−n = a 0 при a≠0 ;
так как
a n
a n
= 1 , то a 0 = 1 при a≠0 .
Используя полученное равенство a 0 = 1 , выясним значение степени
с отрицательным показателем:
a m • a –m = a m+(–m) = a m−m = a 0 = 1 ;
значит, a m • a (–m) = 1 ;
выразим a –m , a –m =
1
a m
= (
1
a
) m при a≠0 .
Это пятый номер, всё понятно и доступно
Ответ:
решение смотри на фотографии
Объяснение: