1) Для определения точек пересечения решаем уравнение:
√-x=x². Возводя обе части в квадрат, получаем -x=x⁴, или x⁴+x=x*(x³+1)=x*(x+1)*(x²-x+1)=0. Первый множитель обращается в 0 при x=0, второй - при x=-1, третий множитель в 0 не обращается. Поэтому нижним пределом интегрирования будет x1=-1, а верхним - x2=0.
2) Площадь искомой фигуры S равна разности площади криволинейной трапеции BAmO, ограниченной слева прямой x=-1, сверху - графиком функции y=√-x и снизу - осью абсцисс, и площади криволинейной трапеции BAnO, ограниченной слева прямой x=-1, сверху - параболой y=x² и снизу - осью абсцисс. Находим площадь каждой трапеции:
SBAmO=∫√-x*dx=-∫√-x*d(-x)=-2/3*(-x)∧3/2. Подставляя пределы интегрирования, находим SBAmO=2/3*(1^3/2)=2/3
SBAnO=∫x²*dx=x³/3. Подставляя пределы интегрирования, находим SBAnO=-(-1)³/3=1/3.
Тогда S=SBAmO-SBAnO=2/3-1/3=1/3. Ответ: 1/3.
Y=π/2-x
siny=sin(π/2-x)=cosx
x+y=π/2
sin²x-sin²y=1 или sin²x-cos²x=-(cos²x-sin²x)= - cos2x=1
cos2x= -1 2x=π+2πk
x=π/2+πk k∈Z
y=π/2-π/2-πk = -πk k∈Z
sqr8(sqr50-sqr18)=sqr8*50-sqr8*18=sqr400-sqr144=20-12=8
sqr - это квадратный корень
Там все написано, ну вроде так должно быть