F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
Ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
Я думаю так)))))))))))))))
Раз значения одинаковы, решаем степени.
x+1 = 4
x+1-4 = 0
x-3 = 0
x = 3
1)
18*(¹/₉)² - 20*¹/₉ = ¹/₉ (18 * ¹/₉ - 20)= ¹/₉ (2-20)= ¹/₉ * (-18)= -2
2) ⁴/₂₅ + ¹⁵/₄ = ¹⁶/₁₀₀ + ³⁷⁵/₁₀₀ = ³⁹¹/₁₀₀= 3.91
3) ³/₂ - ⁹/₅ = ¹⁵/₁₀ - ¹⁸/₁₀ = - ³/₁₀ = - 0.3
5) 0.9 / (1+ ¹/₈) = 0.9 / (⁹/₈) = ⁹/₁₀ * ⁸/₉= ⁸/₁₀ = 0.8
8) 1 ⁸/₁₇ : (¹²/₁₇ + 2 ⁷/₁₁) = ²⁵/₁₇ : (¹²/₁₇ + ²⁹/₁₁) = ²⁵/₁₇ : (¹³²/₁₈₇ + ⁴⁹³/₁₈₇)=
= ²⁵/₁₇ : ⁶²⁵/₁₈₇ = ²⁵/₁₇ * ¹⁸⁷/₆₂₅ = ¹¹/₂₅