1) Четырехугольник МОКС:
∠МОК=∠АОВ=120°
∠М=∠К=90°,
значит ∠С=60°.( сумма всех углов четырехугольника 360°).
По формуле
S(Δ)=(1/2)·b·c·sinα
находим
S( ΔABC)=(1/2)· AC·BC·sin ∠C=10√3,
2) Из прямоугольного треугольника АСК по теореме Пифагора
АК²=20²-12²=256
АК=16
Если провести вторую высоту из точки В, то получим два равных между собой треугольника ( трапеция равнобедренная по условию) и прямоугольник.
Пусть КD=x, тогда верхнее основание ВС=16-х, нижнее основание AD=16+x
S( трапеции)=(BC+AD)·CK/2=(16-x+16+x)·12/2=32·12/2=16·12=192.
3)∠M=∠Q =60°( трапеция равнобедренная MN=PQ).
ΔMNK - равнобедренный (MN=NK=MQ/2)
Значит ∠MKN=60°, а так как сумма углов треугольника 180°, то и
∠MNK=60°.
Треугольник MNK- равносторонний.
∠KNP=120°-∠MNK=120°-60°=60°
В треугольнике NPK
NP=MK=NK, значит это равнобедренный треугольник с углом 60° при вершине, что означает, треугольник равносторонний.
ΔMNK=ΔKNP.
Все стороны этого треугольника равны между собой.
КР=NK=NP.
NP=KQ
Треугольники КPQ и КNP также равны между собой.
Все три треугольника равны между собой
S( трапеции)=3·5=15
Т.к. в треугольнике ДСЕ АС ⊥ ДЕ, а ДА=АЕ, то ДС=СЕ (по признаку(в равнобедренном треугольнике высота является медианой и биссектрисой))
как то так
Угол В и угол MС(Назовем угол В- угол 2, а угол МС- угол 3)- соответственные углы (как показано на картинке)
=> угол МС= 180-128=52 градуса.
Треугольник ВDС равнобедренный => углы при основании равны.
Если угол В= 52 => 180-52=128 - это сумма двух углов.
128:2=64
Ответ: угол 1= 64 градуса
площадь трапеции =произведению полусуммы оснований на высоту, S=a+b/2*h, поэтому h=2S/a+b, h=2*2.56/3.5+2.9=5.12/6.4=0.8