ну что за вопрос, сумма углов в 3-угольнике равна 180 градусов
b=180-35-35=110 град.
<span>Основа пирамиды- прямоугольник со сторонами 12 и 16 см. каждое боковое ребро равняется 26 см. Найти высоту пирамиды</span>
Для этого нужно найти косинус угла между векторами. Если он будет равен 1 (т.е. угол между векторами равен 0), то векторы параллельны.
Скалярное произведение равно 0*0 + 5*6 = 30.
Произведение модулей равно 5*6 = 30.
Косинус угла между векторами равен 30:30 = 1.
Следовательно, угол между векторами равен 0, т..е векторы параллельны.
1. По св-ву угла в 30° в прямоугольном Δ (напротив него лежит катет, равны половине гипотенузы), получим:
ВА=2ВС
ВС=20
2. Представим ВС как х, а АВ тогда как 2х(по св-ву об угле в 30) и, пользуясь теоремой Пифагора, составим уравнение:
4х²=х²+(34√3)²
3х²=3468
х²=1156
х=34
ВС=34, тогда АВ=34·2=68
3. Найдем ∠В по теореме о сумме ∠Δ:∠В=180=90-60=30°.
И представим СА как х, а ВА как 2х (по теореме о угле в 30). По теореме Пифагора составим уравнение:
4х²=х²+(50√3)²
3х²=7500
х²=2500
х=50
СА=50
4. Рассмотрим ΔАВС: ∠А=30°⇒ВА=2ВС(по св-ву об угле в 30)⇒ВС=45√3.
По теореме Пифагора найдем СА:
СА²=(90√3)²-(45√3)²
СА²=24300-6075
СА²=18225
СА=135
Рассмотрим ΔСНА: ∠С=90°(по опр. высоты), ∠А=30°⇒СА=2СН
СН=67.5
5. Рассмотрим ΔАВС и высоту СН. ΔАВС - равносторонний⇒СН - и высота, и медиана, и биссектриса(по сву-ву мед.). АН=НВ(по опр. мед.)⇒АН=23√3
Рассмотрим ΔАНС: он прямоугл., так как СН - высота. По теореме Пифагора найдем СН:
СН²=СА²-АН²
СН²=(46√3)²-(23√3)²
СН²=6348-1587
СН²=4761
СН=69
Да так как
они имеют общею сторону и
общий угол