Найдем Д1Р=√3²+1=√10
Д1В=√17
ВР=√5
В треугольнике Д1ВР найдем косинус угла ВД1Р
5=10+17-2√170 cos ВД1Р
отсюда косинус нужного угла будет равен -22/2√170
огда скалярное произведение равно произведению длин на косину угла
получим √10·√17·(-22/2√170)= -11
8. простая. векторы перпендикулярны. косинус угла в 90 градусов равен 0. Скалярное произведение будет равно нулю
9. мой ответ не совпадает ни с одним из тех, которые даны
АК и ДК - высоты равностороннего треугольника со стороной 6
По теореме Пифагора АК=ДК=√6²-3²=√27=3√3
Рассмотрим равнобедренный треугольник АКД. Найдем косинус угла ДКА по теореме косинусов. Для этого ищем сторону АД
АД²=АК²+КД²-2АК·КДcos АКД
36=27+27-2·3√3·3√3 cos АКд
cos АКД= 1/3
тогда нужное скалярное произведение будет равно произведению длин векторов на косинус угла между ними
3√3·3√3·1/3=9
а такого ответа в перечисленных нет
10. Рассмотрим треугольник АЕД. АЕ=ДЕ=√3/2
По теореме Пифагора √1-(1/2)²=√(3/4)=√3/2
Прямая СЕ перпендикулярна АЕ и прямая СЕ перпендикулярна ДЕ
поэтому СЕ перпендикулярна двум пересекающимся прямым плоскости треугольника, значит СЕ перпендикулярна всей плоскости АДЕ, а значит и любой прямой лежащей в этой плоскости.
Поэтому опять скалярное произведение равно 0
Доказывай по углам, если в этих некоторых углах есть:соотвественные, накрст лежащие, односторронние, если есть хотя бы что-то от сюда, то уде можно доказать, да и к тому же биссектриса делить, один угол на два одинаковых, вот и реши.
Секущая плоскость пересекает параллельные грани по параллельным прямым.
Грань АВВ₁А₁ пересечена по прямой АВ.
В грани CDD₁C₁ через точку С₁ проходит прямая C₁D₁║АВ.
АВC₁D₁ - искомое сечение.
AD⊥AB так как все грани прямоугольники.
AD - проекция AD₁ на плоскость основания. ⇒
AD₁⊥AB, ⇒АВC₁D₁ - прямоугольник.
ΔAD₁D: ∠D = 90°, по теореме Пифагора
AD₁ = √(AD² + DD₁²) = √(1600 + 81) = √1681 = 41
Sabc₁d₁ = AB · AD₁ = 7 · 41 = 287
Если правильно прочитала и поняла, то прямые a и b параллельны, отсюда углы 3 и 4 односторонние и дают в сумме 180 градусов.
Дальше я решаю так: если бы секущая была перпендикулярна прямым, то углы были бы равны 90 градусам (180:2=90). Но т.к. угол 3 на 30 градусов больше угла 4, то угол 3 равен 90+30=120 градусам, а угол 4 равен 90-30=60 градусам.