1. Найдем центр отрезка (пускай будет С) здесь и будет центр окружности:
Xc = (Xa+Xb)/2 = (-2+7)/2 = 2,5;
Yc = (Ya+Yb)/2 = (2+(-7))/2 = -2,5;
Итак, центр находится в координатах (2,5;-2,5).
2. Теперь найдем длину радиуса окружности:
корень от (Xc-Xa)^2+(Yc-Ya)^2 = корень((2,5+2)^2+(-2,5-2)^2) = 6,364
3. Теперь напишем формулу окружности по формуле (x-a)^2+(y-b)^2 = R^2, где a и b - x и y центра окружности (40,5 - это квадрат радиуса):
(y+2,5)^2 = 40,5 - (x-2,5)^2;
y^2 + 5y + 6,25 = 40,5 - x^2 + 5x - 6,25;
y^2 + 5y - 28 = 5x - x^2
y будет рассчитываться по квадратному уравнению.
Вроде как-то так. По-моему. Рисовать я думаю не буду. Сканера нет.
Поставь иголку циркуля на точку (2,5;-2,5), а карандаш в точку по условию (любую) и начерти.
АО - радиус, АС - касательная, значит ∠ОАС=90°.
Треугольник АОВ равнобедренный т.к. АО=ВО=R, значит ∠ВАО=∠АВО=(180-108)/2=36°.
∠ВАС=∠ОАС-∠ВАО=90-36=54° - это ответ.
Найдем радиус основания, 6*sin30/2=3/2=Rвысота цилиндра 6*cos30=3sqrt(3)найдем сторону треугольникапо теореме синусов a=2Rsin((180-120)/2)=Rоснование треугольника b=2R*sin60=Rsqrt(3)P=2R+Rsqrt(3)=R(2+sqrt(3))=(3/2)*(2+sqrt(3))<span>S=3sqrt(3)*(3/2)(2+sqrt(3))=9sqrt(3)+27/2</span>