Tgx≥-1
-π/4+πk≤x<π/2+πk
3)x+y=π/2
sinx+siny=-√2
sin(π/2-y)+siny=-√2
cosy+siny=-√2
1/√2* cosy+1/√2*siny=-1
sinπ/4=1/√2;cosπ/4=1/√2
sin(π/4+y)=-1
π/4+y=-π/2+πk
y=-π/4-π/2+πk
y=-3π/4+πk;k€Z
x=π/2-y==5π/4-πk
А) (с-2)²=c²-4c+4
б) (0.4+d)²=0,16+0,8d+d²
в) (к-0.5)²=k²-k+0,25
г) (-х+у)²=(y-x)²=y²-2xy+x²
<span>д) (-m-n)</span>²<span>=(m+n)</span>²=m²+2mn+n²
1. A) B(0; 6; -2)
2. OA = √(x² + y² + z²) = √(25 + 1 + 4) = √30
3. a(6; -2; -3), b(6; 6; 3)
1) |a| = √(36 + 4 + 9) = √49 = 7 (A)
2) |b| = √(36 + 36 + 9) = √81 = 9 (B)
3) |b - a| = |(0; 8; 6)| = √(0 + 64 + 36) = √100 = 10 (Г)
4) a·b = 6·6 - 2·6 - 3·3 = 36 - 12 - 9 = 15 (Д)
4. x₁ = 2x₀ - x₂ = -10 - 3 = -13;
y₁ = 2y₀ - y₂ = 6 - 1 = 5;
z₁ = 2z₀ - z₂ = 20 - 14 = 6
М(-13; 5; 6)
5. a·b = 0;
-4·2 + n·3 + 4·5 = 0;
-8 + 3n + 20 = 0;
3n = -12;
n = -4.
6. A(1; -3; -1), B(4; -2; 2), C(9; 5; -7)
x₀ = (x₁ + x₂)/2 = (1 + 9)/2 = 10/2 = 5
y₀ = (y₁ + y₂)/2 = (-3 + 5)/2 = 2/2 = 1
z₀ = (z₁ + z₂)/2 = (-1 - 7)/2 = -8/2 = -4
N(5; 1; -4)
BN = √(5² + 1² + 4²) = √(25 + 1 + 16) = √42
7. k = BD₁
BD₁ = √(a² + b² + c²) = √(BC² + BA² + BB₁²) = √(36 + 4 + 16) = 2√14