Если треугольник равнобокий и низ = 46 то 46+95+95=236 а если низ равен 95 то 46+46+95=187
Дана хорда АВ, проведем радиусы в точки А, В.
Рассмотрим треугольник АОВ, где О центр окружности.
АО=ВО как радиусы, тогда треугольник равнобедренный, проведем высоту АН к стороне АВ.
Рассмотрим треугольник ОНВ, он прямоугольный. Найдем ОН. (OH расстояние от центра окружности до хорды)
ОН = корень из(АО^2 - AH^2) = корень из (17^2 - 15^2) = 8
CN=16-10=6см
предположим, что треугольник АВС подобен треугольнику MBN, тогда:
AM:AB=9:24 (=0.375 - это коэффициент подобия)
СN:CB=6:16 (=0.375 - это коэффициент подобия)
Коэффициенты подобия равны, значит наше предположение верно => угол BNM=углуBCA (как соответственные углы при прямых АС и MN и секущей ВС)
А мы знаем, если соответственные углы равны, то прямые параллельны => АС II MN
1) Проекция апофемы на основание равно h/3, где h - высота основания.
Пусть сторона основания равна а.
Для правильной пирамиды h/3 = (а*(√3/2)/3 = а√3/6.
Пусть заданный отрезок l - это перпендикуляр ОК из центра основания на апофему. Тогда отрезок ОД, равный h/3, равен l/(sin α).
Приравняем а√3/6 = l/(sin α).
Отсюда а = (6l)/(√3*(sin α).
Высота пирамиды Н = ОД*tg α = (l/(sin α))*((sin α)/(cos α)) = l/(cos α).
Апофему А находим по Пифагору:
А = √((l/(sin α))² + (l/(соs α))²) = √((l²(sin²α + cos²α))/(sin²α*cos²α)) =
= l/(sinα*cosα).
Умножим числитель и знаменатель дроби на 2 и получаем ответ:
апофема A = 2l/(2sinα*cosα) = 2l/(sin(2α)).
2) Гипотенуза основания равна √(6² + 8²) = 10 см.
Так ка угол наклона всех граней к основанию одинаков, то:
- высоты Н треугольников каждой грани равны между собой,
- проекция высоты Н треугольников каждой грани на основание равна радиусу r вписанной в основание окружности.
Полупериметр основания р = (6+8+10)/2 = 12 см.
Площадь основания So = (1/2)*6*8 = 24 см².
Тогда r = S/p = 24/12 = 2 см.
Отсюда высота грани Н = r/(cos 60°) = 2/(1/2) = 4 см.
Получаем ответ: Sбок = ((1/2)РА = (1/2)(2*12)*4 = 48 см².
Т.к АВ=ВС ,это равнобедренный треугольник ,следовательно углы равноб.треугольника равны