R=OK + KC =1,5+1=2,5 ;
AK =KB =AB/2 ;
AK*KB =OC*(2R - OC) ;
( если хорды AB и CD пересекаются в точке M AM*MB =CM*DM).
(AB/2)² =1*(5 -1);
AB/2 =√4 =2;
<span>AB =2*2 =4
наверно так.</span>
180:10=18, поэтому хотя бы 1 угол меньше 20 градусов
Радиус окружности 5*sqrt(3)/2.
Проведем плоскость через адиус шара перпендикулярную плоскости в которой лежит окружность. Увидим в ней прямоугольный треугольник
с гипотенузой Р, катетами Р/2 и 5*sqrt(3)/2, где Р искомый ралиус.
Угол при известном катете , очевидно, 30 градусов. Значит Р=5 (делим 5*sqrt(3)/2 на косинус 30 градусов). Или по теореме Птфагора : P^2-P^2/4=25*3/4 , значит P^2=25.
Ответ: 5
В плоскости перпендикулярной плоскости а и АВС проходящей через катет ВС получим линейный угол ДСВ=60 двугранного угла образованного заданными плоскостями (ВС и СД перпендикулярны ребру АС). ВД -перпендикуляр к плоскости а. ВС= корень из(АВ квадрат -АС квадрат)=корень из (169-25)=12. Угол ДСВ=60. Искомое расстояние ВД=ВС*sin60=12*(корень из 3)/2=6 корней из 3.
треугольник АВС, уголС=90, АС=6, ВС=8, АВ=корень(АС в квадрате+ВС в квадрате)=корень(36+64)=10, радиус вписанной=(АС+ВС-АВ)/2=(6+8-10)/2=2