Радиус описанной /около треугольника со сторонами а, в, с/ окружности R равен а*в*с/(4*S)
Найдем третью сторону по теореме ПИфагора ее квадрат равен
25²+(10√14)²=625+1400=2025=45², т.е. третья сторона треугольника равна 45
Площадь треугольника ищем, перемножая катеты и деля полученное произведение на два.
25*10√14/2=125√ 14, значит, искомый радиус равен
45*25*10*√14/(4*(125√14))=22,5
Ответ 22,5
Площадь ВОД=1/2*ВО*ДО*sin угла ВОД , 14=1/2*6*8*sin ВОД, sin ВОД=28/48=7/12, уголВОД=уголАОС как вертикальные, синусы их равны, площадь АОС=1/2*АО*СО*sinАОС=1/2*10*12*7/12=35
другое решение - проводим СВ и АД, треугольник ВОД, проводим высоту ДК на ВО, ДК=2*площадь ВОД/ВО=2*14/8=3,5, треугольник АВД, площадь АВД=1/2*АВ*ДК=1/2*(10+8)*3,5=31,5, площадь АОД=площадьАВД-площадьВОД=31,5-14=17,5, проводим высоту АТ на СО, АТ=2*площадьАОД/ОД=2*17,5/6=35/6, площадь АСО=1/2*СО*АТ=1/2*12*35/6=35, ВСЕ!
Площадь параллелограммама:
S=8*3=24 - площадь через меньшую высоту.
S=6*h где h - большая высота.
24=6*h
h=4.
В прямоугольном треугольнике МОС ищем ОС=2/3СК.