По - сколько О - середина гипотенузы Ba , следует :
BO = OA = OC = 2,5
Ba=2BO=5
Ca находим по теореме Пифагора .
5 в квадрате - 4 в квадрате = 25 - 16 = 9 извлекаем корень = 3 .
Ответ 10 градусов
бисектриса делит на 45 град
так как 180 - (35 +90) = 55
и 180 - (55 + 45 ) = 80
и 180 - ( 80 + 90) = 10 град
Пусть трапеция имеет вершины АВСD. Угол D=45(гр.) ну он тип угол при основании.
По свойству прямоугольной трапеции наименьшая боковая сторона - это сторона при прямом угле. Т.е. АВ=9. То есть и высота в трапеции равна 9.
Строим высоту СН=9( только что писала почему равную 9). И рассматриваем треугольник СDH: угол CHD - прямой, угол D=45(гр.), следовательно и угол HCD=45(гр.)(180-90-45=45)
Значит, треугольник СНD - равнобедренный и СН=НD=9.
Найдем, чему равна боковая сторона СD. По теореме Пифагора: CD^2=81+81=162==> CD= 9 корней из 18 ( не могу вставить формулу: выглядит примерно так 9\|18'
Известно, что сумма боковых сторон трапеции равна сумме оснований: тогда сумма оснований равна ==> 9+(9\|18':2)+(9\|18':2) (НD+AH+BC)
А площадь трапеции равна: 1/2 суммы оснований умноженная на высоту, т.е. (НD+AH+BC)*CH= 1/2(9+9\18')*9=4,5*(9+9\|18')=4,5*9+4,5*9\|18'=40,5+40,5\|18'
Может это как то преобразуется, но по-моему решается так..;)
1) КС = ВС (по условию)
2) Угол АСВ = угол АСК (по условию)
3) АС - общая сторона треугольников АВС и АКС
Тогда треугольники АВС и АКС равны по двум сторонам и углу между ними
Формула: объем = (1/3)*пи*(радиус основания в квадрате) высота. если уменьшить высоту в 5 раз, объем уменьшится тоже в 5 раз