Перейдём от переменных {x, y, z} к новому набору переменных {u, y, z}, где u = xyz. В новых переменных V задаётся неравенствами 0 ≤ u ≤ 1, y ≥ 1, z ≥ 1.
Якобиан обратного преобразования:
Якобиан обратного преобразования положительный на V, поэтому переход к новым переменным точно взаимно-однозначный, якобиан прямого преобразования
Теперь тройной интеграл легко сводится к повторным:
Второй и третий интегралы табличные, первый берётся по частям:
Ответ:
В принципе, выписывать новые переменные было необязательно, можно было бы проинтегрировать и так, сначала по x (0 ≤ x ≤ 1/yz), затем получатся такие же интегралы по y и z.
Так как минимальное значение очков, выпавших на кубике - 1,
то варианты набора 5 очков: 113; 122; 131; 212; 221; 311.
То есть всего вариантов выпадения 5 очков: m = 6
Так как каждый кубик дает 6 вариантов броска, то всего различных вариаций бросков трех кубиков существует: n = 6³ = 216.
Вероятность выпадения 5 очков: P(A) = m/n = 6/216 ≈ 0,028
Ответ: 0,028
<h2>ФОРМУЛА:</h2>
a^3-b^3=(a-b)(a^2+ab+b^2)
17c^3-17d^3=(c-d)(c^2+cd+d^2)