Проведем 2 высоты ВН1 и СН2
АН1 + DН2 = 15-7 = 8
Треугольник АВН1 с углом при основании 60°, а треугольник DСН2 с углом 30°.
tg 60° = BH1/АН1 = 1/√3
AH1 = BH1/√3
tg 30° = CH2/DH2 = √3/3
DH2 = 3*CH2/√3
AH1 / DH2 = 3 |=> AH1 = 3*DH2
DH2 + 3*DH2 = 8
DH2 = 2
AH1 = 6
=> BH1 = tg 60° * AH1 = 6/√3=2√3 .
Рассмотрим прямоугольный треугольник DBH1. DB - диагональ.
DB² =DH1² + BH1² = (7+2)² +(2√3)²=81+12 = 93
DB = √93
аналогично рассмотрим прямоугольный треугольник ACH2
AC² = (7+6)²+(2√3)² = 169 +12 = 181
AC = √181
1)
Найдем основания.
3х - меньшее основание;
5х - большее основание.
5х - 3х = 32
2х = 32
х = 32 : 2
х = 16
3 * 16 = 48 (см) - меньшее основание.
5 * 16 = 80 (см) - большее основание.
Найдем длину средней линии трапеции.
Она равна полусумме оснований.
(48 + 80) : 2 = 128 : 2 = 64 (см) - длина средней линии трапеции.
Ответ: 64 см.
2)
40% = 0,4
х - большее основание;
0,4х - меньшее основание.
х - 0,4х = 2,8
0,6х = 2,8
х = 2,8 : 0,6
х = 4 2/3 (см) - большее основание.
(4 2/3) * 0,4 = 1 13/15 (см) - меньшее основание.
(4 2/3 + 1 13/15) : 2 = (4 10/15 + 1 13/15) : 2 = (4 23/15) : 2 = 2 23/30 (см) - длина средней линии трапеции.
Ответ: 2 23/30 см.
1. H₁=4
R₁=3
L₁=5
S₁=πR₁L₁
S₁=π*3*5
<u>S₁=15π</u>
2. H₂=3
R₂=4
L₂=5
S₂=πR₂L₂
S₂=π*5*4
<u>S₂=20π</u>
<u>S₂>S₁</u>
Извени, смог только 4 номер.