============== 1 ==============
============== 2 ==============
x - любое число
(2х+3)(х+1)>=х2+9;
(2х+3)(х+1)-х2+9>=0;
2х2+2х+3х+3-х2+9>=0;
Ищем подобные слагаемые и получаем:
х2+5х+12>=0;
Приравниваем неравенство:
х2+5х+12=0;
Д=В2-4ас=(5)2-4•1•12=25-48=-17.
Д<0, значит уравнение не имеет корней.
<span>y=x³+2x²-x-2
y=0
</span><span>x³+2x²-x-2=0
</span><span> x³+2x²-x-2</span><u>| x-1</u>
- <u> x³-x²</u> x²+3x+2=(x+1)(x+2)
3x² -x
<u>- 3x² -3x</u>
2x -2
<u> - 2x -2</u>
0
Получаем:
К) х²=4(2х-3) м) 6/х+6/х+1=5
х²=8х-12 6х+6+6х= 5х²+5х
х²-8х+12=0 -5х²+7х+6=0
Д= 8²-4*1*12=64-48=16=4²<u /> Д= 7²-4 *(-5)*6=49+120=169=13²
х1= (8-4)/2= 2 х1= (-7-13)/2*(-5)=-20/-10=2
х2= (8+4)/2=6 х2=(-7+13)/-10=6/-10=-3/5
н) х-60/х=4 п) х²+2х-15/х-1=0
х²-60=4х х²+2х-15=0
х²-4х-60=0 Д=2²-4*1*(-15)=4+60=64=8²
Д= 4²-4*1*(-60)=16+240=256=16² х1= (-2-8)/2=-10/2=-5
х1= (4-16)/2=-6 х2= (-2+8)/2=6/2=3
х2= (4+16)/2=10
л) 3+10/х=х
3х+10=х²
-х²+3х+10=0
Д= 3²-4*(-1)*10=9+40=49=7²
х1=(-3-7)/-2= 5
х2= (-3+7)/-2= -2
о) 5/х+3+4/х=3
5х+4х+12=3х²+9х
-3х²=-12
х²=-12/-3
х²=4
х=2