b(1) = -2
b(n+1) = -2* 1/b(n)
b(2) = 2*1/2 = 1
b(3) = -2*1 = -2
b(4) = 2*1/2 = 1
b(5) = -2/1 = -2
q = b₂ / b₁ = -140 / -175 = 0.8
Формула-b(n) = b₁ * qⁿ⁻¹
b(5) = -175 * 0.8⁴ = -71.68
q = b₂ / b₁ = -64 / -256 = 0.25
Формула-b(n) = b₁ * qⁿ⁻¹
b(5) = -1024 * 0.25⁴ = -4
Формула-S(n) = b₁-b₂*qⁿ⁻¹
\1-q
S(n) = -1024+4*0,25\1-0,25=-1364
Знаменатель прогрессии q = -3
b(7)=-113*=-113*729=-82377
Знаменатель прогрессии q = 3
S(5) = b₁(q⁵ - 1)/(q - 1) = -7(3⁵ - 1)/(3 - 1) = -7(243 - 1)/2 = -7 · 242/2 = -7 · 121 = -847
q=b₄/b₃ = -96/24 = -4
b₂=b₁*q=1.5 * (-4)= -6
.........................
Подставляя в уравнение y=k*x+5 координаты точки В, получаем уравнение 1=k*3+5, откуда k=-4/3. Запишем искомое уравнение в виде y-y0=k1*(x-x0), где x0 и y0 - координаты точки С, k1 - угловой коэффициент искомой прямой. Так как по условию эта прямая параллельна прямой y=k*x+5, то k1=k=-4/3. Тогда y-(-1)=-4/3*(x-(-2)), или y+1=-4/3*(x+2), или y=-4/3*x-11/3 - искомое уравнение. Ответ: y=-4/3*x-11/3.
Равен x^4-x³+x²+x|3-(-2)=81-27+9+3-16-8-4+2=40
--------------------------------------------
все по формуле F(x^n)=x^(n+1)/(n+1)