a)
Чтобы не рассматривать несколько случаев, когда (x-3)≥0 (x-3)≤0 , x≥0 , x≤0,возведём обе части равенства в квадрат, получим равносильное уравнение, т.к. обе части равенства неотрицательные.
На рис. жёлтым цветом выделены части плоскости, где |x-3|<|2x| ( красный график функции y=|x-3| лежит ниже синего графика у=|2х| ).
2*(4*(-0,4)-0,5*1/3)-(3*(-0,4)-7*1/3)=2*(-1.23/30)-(-1.1/15)=-3.8/15+(-1.1/15)=-4.3/5
Для нахождения производной сложжной функции надо уметь находить аргумент этой самой сложной функции. Потому что по правилу нахождения производной, надо производную внешней функции умножить на производную внутренней функции ,то есть аргумента. Это легко будет сделать ,если ты будешь после названия функции произносить не "х" .как мы привыкли, а "u".
Например, не сложная функция y=sinx. А сложная - y=sin(x²). Можно произнести
y=sinu, где u=x². Тогда производная
Ещё пример: