Дана функция у=2х³ <span>+ 3х</span>² <span>+ 2.
Её производная равна:
y' = 6x</span>² + 6x = 6x(x + 1).
Приравняв производную нулю, находим 2 критические точки:
х = 0 и х = -1.
Тем самым мы определили 3 промежутка монотонности функции:
(-∞; -1), (-1; 0) и (0; +∞).
Находим знаки производной на этих промежутках.
<span>Где производная положительна -
функция возрастает, где отрицательна - там убывает. Точки, в которых происходит
смена знака и есть точки экстремума - где производная с плюса меняется на минус
- точка максимума, а где с минуса на плюс - точки минимума.
</span><span><span><span>
x = -2
-1
-0,5
0 1
</span><span>
y' =
12
0 -1,5
0 12.
Как видим, максимум функции в точке х = -1, минимум в точке х = 0.
Найдём значения функции в этих точках и на границах заданного промежутка.
</span></span></span><span><span><span>
x = -2 -1
-0,5
0
</span><span>
y =
-2 3 2,5
2.
Ответ: </span></span></span><span>наибольшее и наименьшее значение функции у=2х^3+3х^2+2 на отрезке [-2;0] равны 3 и -2.</span>
Тут только 4 и 5надеюсь поймешь( во вложениях)
И 2 еще разберешься
-(9d+6)+(d-7)>0
-9d-6+d-7>0
-8d-13>0
-8d>13
d<-13/8=d<-1 5/8 = d<-1,625
<span>Sin270 sin 50 + cos 0 cos 40= -1 * sin 50 + 1* cos 40 =
(sin50 = cos 40)
=-cos40 + cos40 = 0</span>