<span>1- cosa/ sina = 1 - ctga</span>
Я буду искать только действительные корни :
sqrt(x-2)+sqrt(4-x)=x^2-6x+11
Возведем в квадрат:
2+2sqrt((x-2)(4-x)) = (x^2-6*x+11)^2
2+2sqrt(-x^2+6x-8) = (x^2-6*x+11)^2
Пусть a = -x^2+6x-8 ,тогда :
2+sqrt(a) = (a+3)^2
2+sqrt(a) = 9+a^2-6*a
a^2-6a-2sqrt(a)+7 = 0
Пусть sqrt(a) = y,тогда :
y^4-6y^2-2y+7 = 0 . Сразу можно заметить ,что один из корней 1.Предположим ,что это выражение y-1 .Тогда (y-1)*a = y^4-6*y^2-2*y+7 .а = y^3+y^2-5y-7 .Тогда y^4-6y^2-2*y+7 = (y-1)*(y^3+y^2-5y-7) = 0. Будем искать корни (y^3+y^2-5y-7) по формуле Кардано. Вычисления очень сложные ,поэтому я их опущу,можете почитать о этой формуле в интернете .В общем второй корень приблизительно равен y = 2.37. Найдем теперь а1 = 1,а2 = 5.6169. Вернемся к уравнению a = -x^2+6x-8 ,тогда получаем x^2-6x+9 = 0 , x = 3 и x = 0.43,x = 5.57 ,однако подставляя второй и третий корень в исходное уравнение видим ,что в таком случае подкоренное выражение <0,такие корни не подходят.
Ответ : 3
<span>Найдите наименьший положительный период функции y=2sinx + 3cos2x (cчитать число pi равным 3)
</span><span>наименьший положительный период функции y=2sinx + 3cos2x
</span><span>
равен 2</span>π
<span>
так. как для </span>2sinx наименьший положительный период равен T1=2<span>π,
</span>а для 3cos2x наименьший положительный период равен T2= 2<span>π/2=</span>π<span>,
</span><span>и наименьший положительный период T3=2</span>π<span>, который одновременно делится нацело как на T1 , так и наT2. (2</span>π/(2π)=1 2π/π=1)<span>
</span>
1.) y>z+x
3.) y-x>z
0>z+x-y
z+x-y<0
4.) y-x>z
y-x-z>0
y-z>x
все по правилам переноса