Проводим ас. Треугольник абс по условию равнобедренный, поэтому углы бас и бса равны, так как лежат против равных сторон. Углы дас и дса равны, так как полкчаются вычитанием из равных углов 1 и 2 равных углов дас и дса. Поэтому треугольник сад равнобедренный и ад равно сд.
Треугольники равны по двум сторонам и углу между ними
Углы вертикальные COF и POT;
раз точка О серединная, то СО = ОТ = 47,2
РО=OF
Тогда и FC=PT=49,7
Пусть угол при основании равен 2a, тогда биссектриса разделит его на угол a. В итоге образуется треугольник с углами a, 2a и 2а. Сумма углов треугольника равна 180=а+2а+2а=5а, а=36. Но угол при основании равен 2а, то есть 2*36=72.
Чтобы найти дли ВD, надо найти координаты точки D. Эта точка - конец отрезка ВD. Координаты точки D знаем, будем искать координаты середины этой диагонали. Пусть это будет точка О(х;у;z). Эта точка - середина диагонали АС. х = (1-1)/2 = 0
у = (3+0)/2 = 1,5
z = (2 +2)/2 = 2
О(0; 1,5;2 ) Пусть В(х';y';z'))
(x' + 5)/2 = 2,5, ⇒x' +5 = 5, ⇒x'= 0
(y' - 4)/2 = 1,5, ⇒ у' -4 = 3, ⇒y' = 7
(z' +1)/2 = 2, ⇒ z' +1 = 4, ⇒ z' = 3
B(0; 7; 3)
|BD| = √((0-5)² +(7+4)² + (3 -1)²)=√(25 + 121 + 4) = √150= 5√6