Преобразуем числитель
Теперь преобразуем знаменатель
Таким образом, <var><var /> в числителе и знаменателе сокращается и остается функция</var>
, которая является параболой с двумя выколотыми точками: при x=3 и x=-2 (в силу ОДЗ).
Прямая y=m будет иметь одну общую точку при трех значениях m.
Первый случай, когда прямая касается вершины параболы, т.е. при m=-6,25 (для нахождения этого значения надо сначала вычислить абсциссу вершины параболы по формуле , а затем полученное решение подставить вместо x и найти y параболы).
Второй случай, когда прямая пересекает параболу в точке x=3. Подставляя это х в параболу получаем y=m=6.
Третий случай, когда прямая пересекает параболу в точке x=-2. Подставляя это х в параболу получаем y=m=-4.
Ответ: m=-6.25, m=6, m=-4.
x\sqrt{x}-\frac{27}{\sqrt{x}+3}=\frac{x^2+3x\sqrt{x}-27}{\sqrt{x}+3}
Sin2a+sin6a/cos2a+cos6a=2sin2a+6a/2*cos2a-6a/2 / 2cos2a+6a/2*cos2a-6a/2= 2sin4a*cos2a/ 2cos4a*cos2a=2tg4a вроде так)
Метод замены переменной:
Используем таблицу первообразных:
Получим:
В итоге: