S4=2^3+ 1=9
S5=2^4+ 1= 17
S5–S4=8
Ответ: е) 8
ОДЗ: Х+1>0 Х>-1
1-3X>0 3X<1 X<1/3 X+1≠1 X≠0 1-3X≠1 X≠0
-1< Х<1/3 И Х≠0 ЭТО ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ
Log(X+1) (1-3X)=-1+2Log(1-3X) (1-3X)(1+X)
1-2X-3X² МОЖНО ПРЕДСТАВИТЬ ,КАК 1-2Х+Х²-4Х²=(1-Х)²-4Х²=ТЕПЕРЬ РАСПИШЕМ КАК РАЗНОСТЬ КВАДРАТОВ (1-Х-2Х)(1-Х+2Х)=(1-3Х)(1+Х)
Log(X+1) (1-3X)=-1+2Log(1-3X) (1-3X) + 2Log(1-3X) (1+X) Log(X+1) (1-3X)=-1+2+2Log(1-3X) (1+X)
Log(X+1) (1-3X) - 2Log(1-3X) (1+X) -1=0
Log(X+1) (1-3X) - 2/Log(1+X) (1-3X) -1 =0
(Log(X+1) (1-3X))² - Log(1+X) (1-3X) -2=0
ПУСТЬ Log(1+X) (1-3X)=t
t²-t-2=0
t1+t2=1
t1*t2=-2
t1=2 t2=-1
Log(1+X) (1-3X)=2 (1+X)²=(1-3X) 1+2X+X²-1+3X=0 X²+5X=0
X(X+5)=0 X1=0 X2=-5
Log(1+X) (1-3X)=-1 (1+X)^-1=(1-3X) 1/(1+Х)=(1-3Х)
1=(1-3Х)(1+Х) 1+Х-3Х-3Х²=1 3Х²+2Х=0 Х(3Х+2)=0 Х=0
3Х+2=0 Х=-2/3
Ответ: Х=-2/3
Ответ на фото/////////////
36(x-1)^4 + 26x = 13x^2 + 12
36(x-1)^4 - 13x^2 + 26x - 12 = 0
36(x^4 - 4x^3 + 6x^2 - 4x + 1) - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 216x^2 - 144x + 36 - 13x^2 + 26x - 12 = 0
36x^4 - 144x^3 + 203x^2 - 118x + 24 = 0
Разложим так
36x^4 - 18x^3 - 126x^3 + 63x^2 + 140x^2 - 70x - 48x + 24 = 0
18x^3*(2x-1) - 63x^2*(2x-1) + 70x*(2x-1) - 24*(2x-1) = 0
(2x-1)(18x^3 - 63x^2 + 70x - 24) = 0
x1 = 1/2
Теперь разложим кубическое уравнение
18x^3 - 12x^2 - 51x^2 + 34x + 36x - 24 = 0
6x^2*(3x-2) - 17x*(3x-2) + 12(3x-2) = 0
(3x-2)(6x^2 - 17x + 12) = 0
x2 = 2/3
И, наконец, решаем квадратное уравнение
D = 17^2 - 4*6*12 = 289 - 288 = 1
x3 = (17 - 1)/12 = 16/12 = 4/3
x4 = (17 + 1)/12 = 18/12 = 3/2
Ответ: 1/2; 2/3; 4/3; 3/2