Пусть основания x, 3x.
Трапеция описана, тогда суммы длин противоположных сторон равны, сумма боковых сторон x+3x=4x.
Трапеция равнобедренная, тогда каждая боковая сторона 4x/2=2x.
Опустим высоту из вершины к большему основанию. Получим прямоугольный треугольник с катетом x и гипотенузой 2x.
Высоту в этом треугольнике можно найти по теореме Пифагора, h=x*sqrt(2^2-1^2)=x*sqrt(3)
Площадь трапеции S = полусумме оснований * высота = (x + 3x)/2 * xsqrt(3) = 2x^2 * sqrt(3)
S = 2x^2*sqrt(3)=sqrt(3); 2x^2=1; x=1/sqrt(2)
Боковая сторона = 2x = 2/sqrt(2) = sqrt(2)
По свойству касательных к окружности из одной точки определяем:
Сторона в 13 см = 6см + 7 см.
Третья сторона равна 7 см+ 8 см = 15 см.
Периметр треугольника Р = 13+14+15 = 42 см.
Полупериметр р = Р/2 = 42/2 = 21 см.
Площадь треугольника по теореме Герона равна:
S = √(p(p-a)(p-b)(p-c)) = √(21*8*7*6) = √7056 = 84 см.
Отсюда получаем ответ: r = S/p = 84/21 = 4 см.
Точку пересечения диагоналей обозначим через О.
AK=a/5*2=0,4a; KO=a/2-0,4a=0,1a.
Тр-к КОD прямоугольный, т. к. диагонали ромба взаимно перпендикулярны.
По теореме Пифагора: DK^2=KO^2+(b/2)^2=0,01a^2+b^2/4; |DK|=V(a^2/100+b^2/4).
Рассм. ΔАКВ и ΔСДВ
ВС=АВ по условию
ДВ=КВ, т.к. ДВ=АВ-АД; КВ=ВС-КС; АД=КС по условию.
Из равных отрезков вычитаем равные части.
∠В - общий ⇒
ΔАКВ=ΔСДВ по 2-м сторонам и углу между ними.
Выбери ответ лучшим пожалуйста