Если х∈[0;π/2], то (х+π/3)∈[π/3;5π/6]. На этом промежутке функция косинус убывает,т.к. значения аргумента находятся в 1 и во второй четвертях.
Следовательно наибольшее значение функция принимает на левом конце промежутка, а наименьшее - на правом.
Наибольшее у(0) = cos(π/3)+1.5 = 0.5+1.5 = 2.
Наименьшее у(π/2) = cos(5π/6)+1.5 = -√3/2+3/2 = (3-√3)/2.
С учётом минуса в степени получим (7/4)^(5/2), а любое число большее 1 в степени большей нуля больше 1 => (4/7)^(-5/2) >1