49x^2+140xy+100y^2-ЭТО ОТВЕТ
X²+10x>0⇒x<-10 U x>0
x-14>0⇒x>14
x∈(14;∞)
x²+10x≥x-14
x²+9x+14≥0
x1+x2=-9 U x1*x2=14⇒x1=-7 U x2=-2
x≤-7 U x≥-2
Ответ (14;∞)
Левую часть приводим к общему знаменателю,получается
13 2/14-9 7/14=13 2/14- 9 7/14
12 16/14-9 7/14=12 16/14-9 7/14
3 9/14=3 9/14
1) 5^(x-2) = 1 5)2^(x²-3x+8) = 64
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
У=ln х-1/х+1y'=1/x+1/(x+1)^2=(x^2+3x+1)/x(x+1)y'=1/x+1/x^2=x^2+x=(1+x)/x^2<span>y'=(2*sqrt(x^2+1)-2x(2x)*(1/2)/sqrt(x^2+1))/(x^2+1)=sqrt(x^2+1)/(x^2+1)^2</span>