Обратим внимание на два момента 1. числа натуральные от 1 до 200 2. Числа четное и нечетное на карточке, отличаются на 1.
Есть одно разложение этих чисел на сто карточек
1-2, 3-4, 5-6, ..... 197-198, 199-200 итого сто пар - других разложений нет , иначе бы не выполнялся пункт что разница на каждой карточке равна 1
Сумма на карточках 3 (1*4-1), 7 (2*4-1), 11 (3*4 -1), .... 395 (99*4-1), 399 (4*100-1) то есть можно вывести общую формулу 4*k-1 (k⊂[1 100])
Надо теперь определить сумма 21-ой карточки равно 2017 или нет
сложим 21 карточку
(4*k₁-1)+(4*k₂-1)+(4*k₃-1)+...+(4*k₂₀-1)+(4*k₂₁-1)=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)-21=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)=2038
k₁+k₂+k₃+...+k₂₀+k₂₁= 2038/4 = 509.5
не может быть , так как слева сумма натуральных чисел и сумма натуральное число, а справа дробь
<span>25/ c-5d(c^2+5d^2/5 -2cd)
25/c -5d(c-d)^2
</span>
<span>Соедините две середины, получите среднюю линию треугольника. Средняя линия параллельна третьей стороне, от которой у вас есть середина. Так что проводите через эту середину прямую параллельную средней линии и получите сторону. Так же можно получить остальные стороны треугольника, а затем вершины как пересечения сторон.</span>
-3²+4²;(-3+4)²
0,3²-1,3²;(0,3-1,3)²
2³-3³;(2-3)³
(0,3+(-0,1))³;0,3³+(-0,1³)