Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*e^(-x^2)
Найдем производную функции
y' =(x^2*e^(-x^2))' = (x^2)' *e^(-x^2)+x^2*(e^(-x^2))' = 2x*e^(-x^2) -x^2*2x*e^(-x^2) =
=2xe^(-x^2)(1-х^2)
Найдем критические точки
y' =0 или 2x*e^(-x)(1-х^2) =0
x1=0 (1-х)(1+x)=0 или х2=1 x3 = -1
На числовой оси отобразим знаки производной
..-... 0..+.. 0....-....0...+...
--------!--------!----------!--------
......-1....... 0 .......1........
Поэтому функция возрастает если
х принадлежит (-1;0)U(1;+бесконечн)
Функция убывает если
х принадлежит (-бескон;-1)U(0;1)
В точке х=-1 и х=1 функция имеет локальный минимум
y(-1) = (-1)^2*e^(-(-1)^2) = e^(-1) =1/e = 0,37
y(1) = (1)^2*e^(-(1)^2) = e^(-1) =1/e = 0,37
В точке х= 0 функция имеет локальный максимум
y(0) = 0^2*e^(-0^2) = 0
A^2-9=(a-3)(a+3); 4-y^2=(2-y)(2+y); 9x^2-16m^2=(3x-4m)(3x+4m); 36m^2-49k^4n^2=(6m-7k^2n)(6m+7k^2n). при решении используем формулу разности квадратов.
4
потому что мы не знаем, положительное оно или отрицательное, дробное или целое