2√6-3√3 / (1-√2)^2 = 2√6-3√3 / 1-2√2 + 2 = 2√6-3√3 / 3-2√2 =
= (2√6 - 3√3) * (3+2√2) / (3-2√2) * (3+2√2) =
= (2√6 - 3√3) * (3+2√2) / 9 - 4 * 2 = (2√6 - 3√3) * (3+2√2) / 1 =
(2√6 - 3√3) * (3+2√2) = 6√6 + 4√12 - 9√3 - 6√6 = 8√3 - 9√3 = -√3
<span>корень из 3 * ctg* x/2=3
ctg x/2=3/</span>√3
x/2=π/6+πN
x=π/2+2πN
F' = (sin'(5x)*sin(3x) + sin(5x)*sin'(3x)) + (cos'(5x)*cos(3x) + cos(5x)*cos'(3x)) = 5*cos(5x)*sin(3x) + 3cos(3x)*sin(5x) - 5sin(5x)*cos(3x) - 3sin(3x)*cos(5x) = 2sin(3x)*cos(5x) - 2sin(5x)*cos(3x) = 2*(sin(3x)*cos(5x) - sin(5x)*cos(3x)) = 2sin(3x-5x) = 2sin(-2x) = -2sin(2x)