в данной системе уравнений записано 3 уравнения:
Первое: y=x-0,5
Второе: y=-2x-6,5
Третье: y=x-3,5
Для каждого из уравнений даны промежутки которым принадлежит Х.
По отдельности строишь каждое уравнение и получаешь, то, что у тебя изображено на фото.
Если не ошибаюсь, то такие функции называют "кусочными"
-7mk+0,3m²n·10mk=-7km+3km³n - третья степень.
-7ab+3a·(-5b)-4b²·2a+3,5·2b=-7ab-15ab-8ab²+7b=-22ab-8ab²+7b - вторая степень.
1. 2³-y³=(2-y)(4+2y+y²) (3m)³+1³ =(3m+1)(9m²-3m+1)
(4y)²-(y^4)²=(4y-y^4)(4y+y^4)
2. ... =(2y-x+2x-y)((2y-x)²-(2y-x)(2x-y)+(2x-y)²) =
= (x+y)(4y²-4xy+x²-4xy+2x²+2y²-xy+4x²-4xy+y²)=
= (x+y)(7y²-13xy+7x²)=7xy²+7y³-13x²y-13xy²+7x³+7yx²=
= 7x³-6xy²-6x²y+7y³
3. 4x²+2x=2x(2x+1) b+4ab+4a²b= b(1+4a+4a²)=b(1+2a)²
... = 2(x²-y²) -(x-y)=2(x-y)(x+y)-(x-y)=(x-y)(2x+2y-1)
4. 114³+166³=(114+166)*Ф(x)=280*Ф(x), где Ф(х) - трехчлен в разложении суммы кубов, все выражение делится на 280.
<span>|х+14| - 7* |1 - х| > х
или что тоже самое </span><span><span>|х+14| - 7* |x -1| > х
</span>разобьем на три интервала
1) </span><span>х+14<0 и x-1<0
x<-14 и x<1
объединяя оба эти условия получим </span>x<-14
на этом интервале наше неравенство имеет вид
<span>-(х+14) + 7* (x -1) > х
-x-14+7x-7>x
6x-21>x
5x>21
x>21/5 но это противоречит условию </span>x<-14. На этом интервале решения нет.
2) <span>х+14≥0 и x-1<0
x≥-14 и x<1
объединяя оба эти условия получим </span>-14≤x<1
на этом интервале наше неравенство имеет вид
<span>(х+14) + 7* (x -1) > х
x+14+7x-7>x
8x+7>x
7x>-7
x>-1
</span>объединяя это условие с -14≤x<1 получим -1 <x<1
3) <span>х+14≥0 и x-1≥0
x≥-14 и x≥1
объединяя оба эти условия получим </span>x≥1
на этом интервале наше неравенство имеет вид
<span>(х+14) - 7* (x -1) > х
x+14-7x+7>x
-6x+21>x
21>7x
</span><span>3>x
</span>объединяя это условие с x≥1 получим 1≤x<3
теперь последнее действие: объединим решения 2) и 3)
-1 <x<3 или x∈(-1;3)