АС1(в квадрате)=АА1(квадрат)+С1Д1(квадрат) +В1С1(квадрат)=729, отсюда АС1=27
(x-a)/(a+3)-(a-4)/(x-a)=0
((x-a)²-(a-4)(a+3))/(a+3)(x-a)=0
1) Данное уравнение не имеет корней, когда знаменатель равен нулю.
ax+3x-a²-3a=0
x(a+3)-a²-3a=0
x(a+3)-a(a+3)=0
(x-a)(a+3)=0
x=a,
a=-3.
2) Рассмотрим второй случай, когда знаменатель не равен нулю, тогда исходное уравнение станет квадратным и не будет иметь корней при условии, что D<0
(a+3)(x-a)≠0
(x-a)²-(a-4)(a+3)=0
(x-a)(x-a)-(a²-a-12)=0
x²-2ax+a²-a²+a+12=0
x²-2ax+a+12=0
D<0
D=4a²-4a-48<0
a²-a-12<0
(a-4)(a+3)<0
a€(-3;4)
Ответ: [-3;4).
Решение смотри на фотографии
У последнего уравнения нет корней так как дискриминант его отрицателен.