Решение задания приложено
1. разложить на множители
-/(2m+1)в квадрате
2. сократить степерь корня и показатель степени на 2
2m+1
1 корзина-х кг
2 корзина-х+12 кг
3 корзина-(х+12)*24 кг
Всего-56 кг
х+х+12+(х+12)*2=56
х+х+12+2х+24=56
4х=56-12-24
4х=20
х=20/4
х=5(кг)-в первой корзине
2)5+12=17(кг)-во второй корзине
3)(5+12)*2=34(кг)-в третьей корзине.
Ответ: 5кг,17 кг,34 кг.
1) log₀.₂₅ (2x²-7x-6)= -2
ОДЗ: 2x²-7x-6>0
2x²-7x-6=0
D=49+48=97
x₁= <u>7-√97</u> ≈ -0.71
4
x₂ = <u>7+√97 </u>≈ 4.21
4
+ - +
------------ -0.71 ------------ 4.21 -------------
\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\
x∈(-∞; -0,71)U(4,21; +∞)
log₀.₂₅ (2x²-7x-6)=log₀.25 (0.25)⁻²
2x²-7x-6 =0.25⁻²
2x²-7x-6=(1/4)⁻²
2x²-7x-6=4²
2x²-7x-6-16=0
2x²-7x-22=0
D=49-4*2(-22)=49+176=225
x₁= <u>7 -15 </u>= -8/4= -2
4
x₂=<u> 7+15</u> = 22/4 = 5.5
4
Ответ: -2; 5,5
2) log₀.₅ (x-4)<1
ОДЗ: х-4>0
x> -4
log₀.₅ (x-4) < log₀.5 0.5
x-4>0.5
x>0.5+4
x>4.5
3) log₂ x +log₄ x + log₁₆ x > 3.5
log₂ x +log₂² x +log₂⁴ x >3.5
log₂ x +log₂ x^(¹/₂) +log₂ x^(¹/₄) > 3.5
log₂ (x*x^(¹/₂)*x^(¹/₄)) > log₂ 2^(3.5)
log₂ (x^(⁷/₄)) > log₂ 2^(⁷/₂)
x^(⁷/₄) > 2^(⁷/₂)
(x^(¹/₂))^(⁷/₂) > 2^(⁷/₂)
√x >2
x>4