3sin²x-cosx+1=0 sin²x=1-cos²x
3-3cos²x-cosx+1=0
3cos²x+cosx-4=0
t=cosx, 3t²+t-4=0, D=1+4*4*3=49, t₁=(-1-7)|6= -4|3<-1 ⇒cosx=-4|3 не имеет решения
t₂=(-1+7)/6=1 , ⇒ ⇒ cosx=1, x=2πn, n∈Z
4x²+4x-11-2/(x²+x-1)≤0
4x²+4x-4-7-2/(x²+x-1)≤0
4*(x²+x-1)-7-2/(x²+x-1)≤0
x²+x-1=t, t≠0
4t-7-2/t≤0
(4t²-7t-2)/t≤0
метод интервалов:
1. 4t²-7t-2=0
D=81, t₁=-1/4, t₂=2
t=0
2.
- + - +
----------|--------|----------|--------->t
-1/4 0 2
t∈(-∞;-1/4]U(0;2]
1. t₁≤-1/4,
x²+x-1≤-1/4, x²+x-3/4≤0 метод интервалов:
x²+x-3/4=0, x₁=-1,5. x₂=0,5
+ - +
-----------|----------------|--------->x
-1,5 0,5
x∈[-1,5;0,5]
2. 0<t₂≤2
t>0, x²+x-1>0
D=5
x₁=(-1-√5)/2. x₂=(-1+√5)/2
+ - +
------------|---------------|----------------->x
-(1+√5)/2 (-1+√5)/2
x∈(-∞;-(1+√5)/2)U((-1+√5)/2;∞)
t≤2, x²+x-1≤2, x²+x-3≤0 метод интервалов:
x²+x-3=0
x₁=(-1-√13)/2
x₂=(-1+√13)/2
+ - +
----------------|----------------|-------------->x
-(1+√13)/2 (-1+√13)/2
x∈[-(1+√13)/2;(-1+√13)/2]
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
--------[-------------)------------[----------]------------(---------------]------------------>x
(-1-√13)/2 (-1-√5)/2 -1,5 0,5 (-1+√5)/2 (-1+√13)/2
x∈[(-1-√13)/2;(-1-√5)/2)U[-1,5;0,5]U((-1+√5)/2;(-1+√13)/2]
(-1+√13)/2≈1,3
<u>ответ: наибольшее целое решение неравенства х=1</u>
3sin2x+cos2x=2
3•2sinxcosx+cos²x-sin²x-2(cos²x+sin²x)=0
-cos²x+6sinxcosx-3sin²x=0
cos²x-6sinxcosx+3sin²x=0 (:cos²x≠0)
3tg²x-6tgx+1=0
tgx=y;3y²-6y+1=0;y=(6±√24)/6=(3±√6)/3
tgx=(3±√6)/3
x=arctg((3±√6)/3)+πn,n∈Z.