Попробуем геометрически построить катет прямоугольного треугольника, равные синусу 30°
Берём равносторонний треугольник со стороной 1. Все его углы по 60°
Режем его пополам высотой. В равнобедренном треугольнике высота, проведённая к основанию, является также медианой и биссектрисой.
Как биссектриса она делит угол, из которого проведена пополам.
60/2 = 30°
Как медиана она делит сторону, к которой проведена пополам, и длина катета, противолежащего углу в 30°, составляет половину от стороны исходного треугольника, т.е. 1/2
Получаем прямоугольный треугольник с острым углом 30°, и катетом против этого угла, равным половине стороны исходного треугольника
(Смотрм, например, верхнюю половину исходного треугольника)
По определению, синус - в прямоугольном треугольнике это отношение катета, противолежащего углу к гипотенузе.
Гипотенуза 1, катет 1/2
sin(30°) = 1/2 / 1 = 1/2