ЗАПОМИНАЕМ на всю жизнь.
1 - При движении навстречу или в противоположные стороны - скорости суммируются.
2 - При движении в одну сторону - "погоня" - скорости вычитаются.
РЕШЕНИЕ
1)
За один час расстояние уже уменьшилось.
d = S - x*t1 = S - x - дистанция при старте легкового автомобиля
d = 500 - 70 = 430 км - начал движение легковой
2)
и встретились через 3 часа.Пишем уравнение.
d = (x+y)*t2 = 3*(x+y) = 3*70 + 3*у = 430
Упростили
3*у = 430 - 210 = 220 км - надо проехать л/авто.
3)
Находим скорость легкового автомобиля - у.
у = 220 : 3 = 73 1/3 ≈ 73,3 км/ч - была скорость л/авто - ОТВЕТ 2)
3.
Наименьшее время, если скорости максимальные.
х = у = 90 км/ч
Скорость сближения
Vc = х+у = 2*90 = 180 км/ч
Время сближения
Tc = S/Vc = 500 : 180 = 2 7/9 ч = 2 ч 46,6 мин - минимальное время - ОТВЕТ 3.
Можно написать выражение
S - х = 3*(x + y) - расстояние через час преодолели за 3 часа.
0.5х2-2х=0
х(0.5х-2)=0
х=0 (0.5х-2)=0
0.5х=2
х=4
Ответ:0;4
Sin4x-sin(π/2-6x)=2*sin(4x-(π/2-6x))/2
*cos(4x+π/2-6x)/2=
2*sin(4x-π/2+6x)/2*cos((π/2-2x)/2=
2*sin(10x/2-π/2:2)*cos(π/2:2-2x:2)=
2*sin(5x-π/4)*cos(π/4-x)
Решение смотрите в прикрепленной картинке
Положим что такое возможно.
Тк мы имеем права в любой итерации перемены местами коэффициентов ,при поиске корней поделить обе части уравнения на любой его -коэффициент,(Тк он константа),то
Можно принять первый член произвольно равным единице.(надеюсь понятно)
Тогда уравнение примет вид: x^2+bx+c=0. По теореме Виета когда два положительных решения,очевидно,что. b=-(x1+x2)<0 c=x1*x2>0
То есть мы имеем : 1>0, b<0,c>0
На какой то итерации перестановок получим два отрицательных корня. Тогда произведение его корней также положительно,а вот сумма корней станет отрицательной.(то второй коэффициент должен быть положительным!)
Тогда кандидатом на второй коэффициент могут быть либо 1 либо с. 1 быть не может,тк произведение корней равно отношению последнего и первого члена(теорема Виета) ,но b и c разных знаков,то их отношение отрицательно,что противоречит положительности произведения корней.
Аналогично с не может быть вторым членом,тк b<0 ;1>0.
То есть мы пришли к противоречит. То есть таких a,b,c не существует