1) Геометрическое место точек, равноудаленных от точек А и В - это серединный перпендикуляр к прямой АВ.
Вектор АВ{Xb-Xa;Yb-Ya;Zb-Za} ={1;4-1}.
Середина вектора АВ - точка Р((1+0)/2;(2-2)/2; (0-1)/2) или
Р(0,5;0;-0,5)
Теперь надо найти точку М(0;0;z), чтобы вектор МР был перпендикулярен вектору АВ.
Вектор МР{0,5-0;0-0;z-(-0,5)} = {0,5;0;z+0,5}.
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Скалярное произведение векторов AB{1;4;-1} и MP{0,5;0;z+0,5}:
(AB*MP) = Xab*Xco+Yab*Yco+Zab*Zco =1*0,5+4*0+(-1)*(z+0,5).
Условие: 0-z=0 => z=0.
Ответ: z=0.
2) Векторы СО и АВ будут равными, если они сонаправлены и равны по модулю. Сонаправленные вектора, это вектора, координаты которых пропорциональны и коэффициент пропорциональности ПОЛОЖИТЕЛЕН.
Вектор АВ{1-0;2-(-2);-1-0} = {1;4;-1},
вектор CO{0-x;0-y;0-0} = {-x;-y;0}.
|AB|=√(1²+4²+(-1)²)=√18.
|CO|=√((-x)²+(-y)²+0²). Если модули равны, то и квадраты модулей равны.
x²+y² = 18. -x/1=-y/4 y=4x.
x²+16x²=18 x²=18/17. x≈1,03
y²=18-18/17 =288/17 ≈17. y≈4,16.
CO={1,03;4,16;0}
3) Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение векторов ВА{-1;-4;1} и m{Xm;1;2}:
(ВА*m)= 1*Xm+4*Ym+Zab*Zm Или
(BA*m)= (-1)*Xco-4*1+1*2=0. => Xm= -2.
Ответ: Xm= -2.
1)т.к внешний угол равен 98,следовательно угол С=180-98=82=угол А, т.к треугольник равнобедренный
1. Используем формулу нахождения треугольника по 2-м сторонам и углу между ними: S=1/2*AC*BC*sinC
2. Запишем отношение площадей подобных треугольников:
S/S1=(1/2*AC*BC*sinC)/(1/2*A1C1*B1C1*sinC1)=(AC*BC)/(A1C1*B1C1), т.к. треугольники подобны => их соответственные углы равны => синусы тоже.
Т.к., по условию, AC/A1C1 = 7/5 и ВС/В1С1 = 7/5, получаем: S/S1=49/25.
3. Теперь вводим х, для обозначения пропорциональности и приведения к той самой разности в 36 м2.
Получаем: 49х-25х=36
24х=36
х=1,5
Подставляем: 49*1,5=73,5 м2
25*1,5 = 37,5 м2
Успехов!
∠СВЕ < ∠ABE на 87° ⇒
∠СВЕ=∠АВЕ-∠АВС=∠АВЕ-87° ⇒ ∠АВС=87°
∠АВЕ=180°-65°=115°
∠СВЕ=∠АВЕ-∠АВС=115°-87°=28°
∠СВЕ < ∠АВD на 33° ⇒ ∠СВЕ=∠АВД-33° ⇒
∠АВD=∠СВЕ+33°=28°+33°=61°
∠DBC=∠АВС-∠АВD=87°-61°=26°
∠DСВ=∠СВЕ=28° (как внутр. накрест лежащие)
∠ВDС=180°-26°-28°=126°