cos(x)<√3/2
x=-11pi/6+2pik
x=-pi/6+2pik
x=(<span>-11pi/6+2pik;<span>pi/6+2pik) . k=z</span></span>
<span><span> cos(x)≥-1/2</span></span>
<span><span>x=2pi/3+2pik</span></span>
<span><span>x=-2pi/3+2pik</span></span>
<span><span>x=(-2<span><span>pi/3+2pik;2pi/3+2pik) . k=z</span></span></span></span>
Общее:x=[-2pi/3+2pik;-pi/6+2pik)U(pi/6+2pik;2pi/3+2pik] / k=z
-------------------------------------------------------------------------------
cos(x)≥0
x=pi/2+2pik
x=-pi/2+2pik
x=[-pi/2+2pik;pi/2+2pik] . k=z
sin(x)<-√2/2
x=-3pi/4+2pik
x=-pi/4+2pik
x=(-3pi/4+2pik;-pi/4+2pik) . k=z
Общее: x=[-pi/2+2pik;-pi/4+2pik) . k=z
Cos²x=(1+cos2x)/2
cos²x=0 значит
(1+cos2x)/2=0 ⇒ cos2x=-1 ⇒ 2x=-π+2πk,k∈Z
x=(-π/2)+πk, k∈Z
Отрезку [-π;π] принадлежат два корня х=(-π/2) и х=(π/2)