Q^3=-54/2=-27
q=-3
b1=2
b2=b1q=-6
b3=b2q=18
b4=-54
B1 = 5; b9 = 25
b9 = b1 · q^8
25 = 5 · q^8
q^8 = 5
q = 5^(1/8)
Образуем геометрическую прогрессию
b1 = 5;
b2 = 5^(1 + 1/8) = 5^(9/8)
b3 = 5^(9/8 + 1/8) = 5^(10/8) = 5^(5/4)
b4 = 5^ (10/8 + 1/8) = 5^(11/8)
b5 = 5^(11/8 + 1/8) = 5^(12/8) = 5^(3/2)
b6 = 5^(12/8 + 1/8) = 5^(13/8)
b7 = 5^ (13/8 + 1/8) = 5^(14/8) = 5^(7/4)
b8 = 5^(14/8 + 1/8) = 5^(15/8)
b9 = 5^(15/8 + 1/8) = 5^(16/8) = 5² = 25
Задача решена
1)(x+4)/5-x/3=7
(3(x+4)-5x-15*7)/15=0
-2x-93=0
x= -93/2
2)-x-2+3(x-3)=3(4-x)-3
-x+3x-2-9=12-3x-3
5x=20
x=4
3)3x-4 и 7x+6
3x-4=7x-6
4x=2
x=1/2
4)2x-1 и 3x+9
2x-1=3x+9
x= -10
5) x^2+7=8x
x^2-8x+7=0
x1=1 По теореме Виетта: x1+x2= -b, x1*x2=c
x2=7
6)x^2+3x=18
x^2+3x-18=0
x1= -6
x2=3
7) (x+2)^2=(x-4)^2
x^2+4x+4=x^2-8x+16
12x=12
x=1
8) (x-4)^2+(x+9)^2=2x^2
x^2-8x+16+x^2+18x+81=2x^2
10x+97=0
x= -9,7
-ctg(17∏/4)=-ctg(∏/4+4∏)=-ctg4∏= -1
см. вложение.....................