1) у=х²+3
т.А(0; 0) - точка на оси ОХ, через которую проходит ось симметрии параболы
2) у=(х+2)²
т.А (-2; 0)
3) у=-3(х+2)²+2
т.А (-2; 0)
4) у=(х-2)²+2
т.А (2; 0)
5) у=х²+х+1
Представим функцию у=ах²+bx+1 в виде у=а(х-х₀)²+у₀, где (х₀; у₀) - вершина параболы:
а=1 b=1 c=1
x₀=<u>-b </u>=<u> -1 </u>=<u> -1 </u>=-0.5
2a 2*1 2
y₀=(-0.5)²+(-0.5)+1=0.25-0.5+1=0.25+0.5=0.75
y=x²+x+1=(x-(0.5))²+0.75=(x+0.5)²+0.75
т.А (-0,5; 0)
6) у=3х²-3х+5
а=3 b=-3 c=5
x₀=<u>-(-3)</u>=<u> 1 </u>=0.5
2*3 2
y₀=3*(0.5)²-3*0.5+5=3*0.25-1.5+5=0.75+3.5=4.25
y=3x²-3x+5=3(x-0.5)²+4.25
т.А (0,5; 0)
У в кубе сокращается, получается: y (в квадрате) + у + 1.07.
При у=3. 3 (в квадрате) + 3 + 1.07 = 9 + 3 + 1.08 = 13.08
12*(1+cos5π/6)/2-√3=6*(1-√3/2)-√3=6-3√3-√3=6-4√3
Sin(a-b-2a)=sin(-a-b)=-sin(a+b)