Задание решено, ответ с решением во вложении!!
Не забудь отметить как лучшее решение)
√3sinx +cosx +2cos3x=0 , x∈[π ;3π/2]
2cos(x -π/3) +2cos3x =0 ;
cos3x+<span>cos(x -π/3) =0 ;
2cos(2x - </span>π/6)*cos(x +π/6) =0 ⇔[cos(2x - π/6)=0 ; cos(x +<span>π/6) =0.
</span>* * * cos(2x - π/6)=0 или cos(x +π/6) =0 * * *
[2x - π/6=π/2+π*n ; x +π/6 = π/2+π*n , n∈Z.
[x = π/3+<span>π*n/2 </span> ; x =π/3+π*n , n∈Z .
-----
x =π/3+π*n/2 ,n∈Z . ⇒x =π/3+π ∈[π ;3π/2] , если n =2 .<span>
x =</span>π/3+π*n , n∈Z . ⇒ x =π/3+π ∈[π ;3π/2] , если n =1 .
ответ: 4π/3.
* * *P.S. a*sinx +b*cosx =√(a²+b²) cos(x -ω) , где ctqω = b/a * * *
√3sinx +cosx =2*((1/2)*cosx +(√3/2)*sinx) =
2*(cosx*cosπ/3 +sinx*sinπ/3) = 2cos(x -π/3 )<span> .
</span>-------
π ≤ π/3+π*n/2 ≤ 3π/2⇔π - π/3 ≤ π*n/2 ≤ 3π/2 -π/3⇔
2π/3 ≤ π*n/2 ≤ 7π/6⇔ 4/3 ≤ n <span>≤ </span>7/3⇒ n=2.
---
π ≤ π/3+π*n ≤ 3π/2⇔π - π/3≤ π*n ≤ 3π/2 -π/3⇔2π/3 ≤ π*n ≤ 4π/3<span>⇔
</span>2/3 ≤ n 4/3⇒ n=1
Д= 1+4*2*3=1+24=25
корень из 25=5
х1=(-1-5)/4=-6/4=-3/2=-1,5
х2=(-1+5)/4=1
ответ : -1,5; 1
B)cos (4) a) долго писать