1) 6*3=18(см) высота
2) <u>18*6:2=54(см²) площадь треугольника</u>
_____________________________________________________________________
пусть С-гипотенуза, А и В катеты
С²=А²+В²=4²+3²=16+9=25
С=√25=5
<u>С=5 5 см гипотенуза</u>
<u>4 * 3 : 2 = 6(см²) площадь треугольника</u>
_____________________________________________________________________
Площадь ромба равна произведению его диагоналей:
<u>6 * 8 =48(см²) площадь</u>
Диагонали ромба в точке пересечения делятся пополам и диагонали ромба разбивают ромб на 4 одинаковых прямоугольных треугольника, гипотенуза каждого из них является стороной ромба и равна:
С²=4²+3²=25
С=√25=5
Сторона ромба=5 см
<u>5 * 4 = 20 (см) периметр ромба</u>
Может токо если эта прямая пересекая одну из прямых будет паралельна к другой( это можно проверить опустив перпендикуляр с одной из точек на пересикаемых прямых-если нужно :) )
Тангенс есть отношение противолежащего катера к прилежащему
здесь тангенс равен 4
<span>В треугольниках АВС и АСD две стороны равны по условию, основание АС - общее. </span>
<span>∆ АВС и∆ АСD равны по третьему признаку равенства треугольников. <em>Углы, лежащие против равных сторон равных треугольников, равны</em>. </span>⇒
∠<span>АСВ=</span>∠САD
Ответ:
D = 22 см.
Объяснение:
Пусть хорда АС = АВ+ВС = 6+12 =18 см.
Проведем перпендикуляр ОР из центра к хорде. Он делит хорду пополам (свойство). Значит АВ =6 см, АР=РС=9см и ВР = 9-6 = 3 см.
Тогда в прямоугольном треугольнике ОРВ по Пифагору
ОР = √(ОВ²-РВ²) = √40 см.
В прямоугольном треугольнике ОРС по Пифагору
ОС = √(РС²+ОР²) = √(81+40) = 11см.
ОС - это радиус окружности. Значит диаметр равен 22 см.