1
2-2cos²x-6cosx+6=0
cos²x+3cosx-4=0
cosx=a
a²+3a-4=0
a1+a2=-3 U a1*a2=-4
a1=-4⇒cosx=-4<-1 нет решения
a2=1⇒cosx=1⇒x=2πk,k∈z
2
Разделим на cos^2x
1-2tgx-3tg²x=0
tgx=a
3a²+2a-1=0
D=4+12=16
a1=(-2-4)/6=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=(-2+4)/6=1/3⇒tgx=1/3⇒x=arctg1/3+πn,n∈z
3
sin(4x+3x)=-1
sin7x=-1
7x=-π/2+2πk,k∈z
x=-π/14+2πk/7,k∈z
4
Разделим на cos^2x
7tg²x-8tgx+1=0
tgx=a
7a²-8a+1=0
D=64-28=36
a1=(8-6)/14=1/7⇒tgx=1/7⇒x=arctg1/7+πk,k∈z
a2=(8+6)/14=1⇒tgx=1⇒x=π/4+πn,n∈z
5
8sin(x/2)cos(x/2)-3(1+cosx)=0
8sin(x/2)cos(x/2)-3*2cos²(x/2)=0
2cos(x/2)*(4sin(x/2)-3cos(x/2))=0
cos(x/2)=0⇒x/2=π/2+πn,n∈z⇒x=π+2πn,n∈z
4sin(x/2)-3cos(x/2)=0/cos(x/2)
4tg(x/2)-3=0
tg(x/2)=3/4
x/2=arctg0,75+πk,k∈z
x=2arctg0,75+2πk,k∈z
это четыре фигуры представленные на рисунк (маленькую зачекнутую не считать.
x*x+6*x-16=0
D=b*b-4*a*c
D=36-4*1*(-16)=36+64=100 (корень запишу так - sqrt)
sqrt(D)=10
x1=(-6-10)/2*1=-16/2=-8
x2=(-6+10)/2*1=4/2=2
при m=1\2; n=2\3; q=-100, то
(1\2)^2 * 2\3 * (-100)*(-0,02) * (2\3)^2=
1) (1\2)^2 * 2\3 = 1\4*2\3=1\6
2)-100 * (-0,02)= 2
3) (2\3)^2= 4\9
4)1\6 *2* 4\9 =4\27