С2+6с-40=0
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
<span>Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10</span>
1. A) B(0; 6; -2)
2. OA = √(x² + y² + z²) = √(25 + 1 + 4) = √30
3. a(6; -2; -3), b(6; 6; 3)
1) |a| = √(36 + 4 + 9) = √49 = 7 (A)
2) |b| = √(36 + 36 + 9) = √81 = 9 (B)
3) |b - a| = |(0; 8; 6)| = √(0 + 64 + 36) = √100 = 10 (Г)
4) a·b = 6·6 - 2·6 - 3·3 = 36 - 12 - 9 = 15 (Д)
4. x₁ = 2x₀ - x₂ = -10 - 3 = -13;
y₁ = 2y₀ - y₂ = 6 - 1 = 5;
z₁ = 2z₀ - z₂ = 20 - 14 = 6
М(-13; 5; 6)
5. a·b = 0;
-4·2 + n·3 + 4·5 = 0;
-8 + 3n + 20 = 0;
3n = -12;
n = -4.
6. A(1; -3; -1), B(4; -2; 2), C(9; 5; -7)
x₀ = (x₁ + x₂)/2 = (1 + 9)/2 = 10/2 = 5
y₀ = (y₁ + y₂)/2 = (-3 + 5)/2 = 2/2 = 1
z₀ = (z₁ + z₂)/2 = (-1 - 7)/2 = -8/2 = -4
N(5; 1; -4)
BN = √(5² + 1² + 4²) = √(25 + 1 + 16) = √42
7. k = BD₁
BD₁ = √(a² + b² + c²) = √(BC² + BA² + BB₁²) = √(36 + 4 + 16) = 2√14
<span>Одна из первообразных этой функции равна F(x)=-1/3х³-7/2х²-10х-6
F(-2) = </span><span>-1/3 * (-2)³ - 7/2 * (-2)² - 10 * (-2) - 6 = . 8/3 - 14 + 20 - 6 = 8/3
</span>F(-5) = -1/3 * (-5)³ - 7/2 * (-5)² - 10 * (-5) - 6 = 125/3 -175/2 + 50 - 6 = -275/6 +44
<span>S = F(-2) - F(-5) = 8/3 - 44 + 275/6 = (275 + 16)/6 - 44 = 48,5 - 44 = 4,5</span>
Решение:
(а-1)(а-4)(а+2)=а^3 - 3а^2 -6а+8а