Мы знаем, что , то
По теореме Пифагора найдём
По условию необходимо домножить на
Ответ: 3
Сделаем рисунок.
∠ ВАС=1/2 центрального угла, опирающегося на ту же дугу, и равен
10°:2=5°
∠ DСА=1/2 центральногоо угла, опирающегося на ту же дугу, и равен
70°:2=35°
∠АМD дополняет угол АМС до 180° и поэтому равен сумме углов ∠МАС и ∠МСА треугольника АМС
∠АМD= ∠МАС+МСА=35°+5°=40°
3. Пусть О - точка пересечения диагоналей.
∠CFO = ∠EDO как накрест лежащие при пересечении параллельных прямых CF и DE секущей FD,
∠COF = ∠EOD как вертикальные, значит
ΔCOF подобен EOD по двум углам.
CF : DE = FO : OD
CF : 12 = 12 : 8
CF = 12 · 12 / 8 = 144 / 8 = 18
4. ∠QTH = ∠QNP как соответственные при пересечении параллельных прямых ТН и NP секущей QN,
угол при вершине Q общий для треугольников QTH и QNP, значит эти треугольники подобны по двум углам.
TH : NP = QT : QN
TH = NP · QT / QN = 25 · 12 / (12 + 8) = 25 · 12 / 20 = 15
5. OC : OK = 8 : (8 + 12) = 8 : 20 = 2 : 5
OB : OM = 6 : (6 + 9) = 6 : 15 = 2 : 5
ΔBOC подобен ΔМОК по двум пропорциональным сторонам и углу между ними.
ВС : МК = 2 : 5
ВС = 2 · 18 / 5 = 36/5 = 7,2
По теореме косинусов зная угол в 120 градусов найдем основание треугольника:
х" = 36+36-2*36*(-1/2), = 72+36 = √108
так как угол между диагональю большей грани и основанием 60 градусов.
то в прямоугольном треугольника где катет высота призмы и основание треугольника ..высота треугольника равна: cos 30 = h/12√3 (катет лежайщий напротив угла в 30 градусов равен половине гипотенузы, сторона 6√3 лежит напротив этого угла), h = 18
площадь этой грани равна: S1 = 18*6√3 = 108√3.
S полн = 2Sосн + S1 + 2S2
S осн = 6*6*√3/2*2 = 9√3
S2 = 18*6 = 108
S полн = 2*9√3 + 108√3+2*108 = 126√3+216.
1)AO=OC
2)угол A= угол C
3)BA=CD(вертикальные стороны/углы)
по 1 признаку треугольники равны, а элементы берешь из вышеперечисленного)