Площадь треугольника равна половине произведения высоты на основание
поэтому удобнее брать один катет как основание и второй как высоту к этому основанию, поэтому надо найти их длины
Пусть длина меньшего катета равна k, тогда длина второго равна k + 2
Применим теорему Пифагора : квадрат гипотенузы равен сумме квадратов катетов
10² = x² + (x +2)² решаем уравнения раскрыв скобки
100 = x² + x² + 4x + 4
2*x² + 4*x - 96 = 0 нормализуем (делим на коэффициент при x²)
x² + 2*x - 48 = 0 по теореме Виета находим корни 6 и -8
(произведение = 48, а сумма корней = -2)
т.к. длина положительна, то меньший катет равен 6, а второй равен 8
Считаем площадь S = ¹/₂ * 6 * 8 = 24
P.S. прочитай теорему Пифагора и теорему Виета
Пусть x - количество деталей в день на первом верстаке, y - кол-во деталей в день на втором верстаке. Тогда из условия задачи можно записать
⇒
Выражаем из первого y и подставляем во второе
y=1,5x-15
2,3x+5,4x-54=100 ⇒ 7,7x=154 ⇒ x=20; y=1,5*20-15=15
<span>12x*2-(3x-4)(4x+1)=19
24х - (12х^2 + 3x - 16x - 4) = 19
24x - 12x^2 - 3x + 16x + 4x = 19
41x - 12x^2 = 19
123 - 108 = 19
х = 3
</span>
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 34.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=34
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=34
2n+1+2n+5=34
4n=28
n=7
7; 8 и 9;10
(10²-9²)+(8²-7²)=19+15
34=34 - верно