(4-x)^2-7=0
16-8x+x^2-7=0
x^2-8x+9=0
D=(-8)^2-4*1*9=64-36=28
x1=8+√28=8+2√7=4+√7
2 2
x2=8-√28=8-2√7=4-√7
2 2
1. По формуле косинуса суммы:
cos(a+π/3)=сos(a)*cos(π/3)-sin(π/3)*sin(a)=cos(a)/2-(√3*sin(a))/2=(cos(a)-(√3*sin(a)))/2=(cos(a)-(√3*√(1-cos(a))))/2=
=(-15/17-(√3*√(1-15/17))/2=-(15+√102/17)/2=7.5+√102/32
2.Формула разности синусов
sin(a-π/4)=sin(a)*cos(π/4)-sin(π/4)*cos(a)=√2/2*(sin(a)-cos(a))
Применив основное тригонометрическое тождество
=√2/2*(1-2cos(a))=√2/2-√2*соs(a)=√2/2-√2*√(1-sin(a))=
=√2/2-√2*√(1-0.6)=√2/2-(2√5)/5
3. sin(a-b) + sin(π/2-a)*sin(b)=
Формула суммы синусов
sin(a)*cos(b)-sin(b)*cos(a)+(sin(π/2)*cos(a)-sin(a)*cos(π/2))*sinb=sin(a)*(cos(b)-sin(b)*(cos(a)-(sin(π/2)*cos(a)-sin(a)*cos(π/2))=
sin(a)*cos(b)-sin(b)*(cos(a)-(sin(π/2)*cos(a)-sin(a)*cos(π/2)))=sin(a)*cos(b)-sin(b)*(cos(a)-sin(π/2)*cos(a)+sin(a)*cos(π/2))=sin(a)*cos(b)-sin(b)*(cos(a)(1-2*sin(π/2))+cos(π/2)*(sin(a)+cos(a))=
=sin(a)*cos(b)-sin(b)*(cos(a)*(1-√2)+√2/2*(sin(a)+cos(a))=sin(a)*cos(b)-sin(b)*(cos(a)-√2/2*cos(a)+√2/2*sin(a)=sin(a)*cos(b)-sin(b)*(cos(a)*(1-√2)+√2/2*(sin(a)+cos(a))=sin(a)*(cos(b)-√2/2*sin(b))-sin(b)*(cos(a)*(1-√2)+√2/2*(cos(a)))=sin(a)*(cos(b)-√2/2*sin(b))-sin(b)*((2-√2)*cos(a))=-sin(b)*((4+√2)/2)+sin(a)*cos(b)-sin(b)*cos(a)=sin(a-b)-sin(b)*((4+√2)/2)
X-5<8/(x+2) ОДЗ: x+2≠0 x≠-2
x-5-(8/(x+2))<0
(x-5)*(x+2)-8<0
x²-5x+2x-10-8<0
x²-3x-18<0
x²-3x-18=0 D=81
x₁=6 x₂=-3
(x-6)(x+3)<0
-∞____+____-3____-____6____+_____+∞
x∈(-3;6).
Согласно ОДЗ:
x∈(-3;-2)U(-2;6).
(578 - 622)² + 4 * 578 * 622 =
= 578² - 2 * 578 * 622 + 622² + 4 * 578 * 622 =
= 578² + 2 * 578 * 622 + 622² =
= (578 + 622)² = 1200² = 1 440 000
cos 85 = cos(90 - 5) = sin 5
sin 185 = sin(180 + 5) = -sin 5
Числитель: cos 105*cos 5 + sin 105*sin 5 = cos(105 - 5) = cos 100
Знаменатель: cos 95*cos 5 - sin 95*sin 5 = cos(95 + 5) = cos 100
Результат: cos 100 / cos 100 = 1