Из вершины В проведем прямую, параллельную СД и она пересечет сторону АД в точке К. КВСД паралелограмм. КД = ВС = 7 см. Тогда АК = 17 - 7 = 10 см.
Рассмотрим треуг. АВК. Угол А = 30, Угол К = Д = 60 как односторонние при параллельных прямых ВК и СД и секущей АД.
Угол В = 180 - (30 + 60) = 90.
Треуг АВК прямоугольный АК гипотенуза. В прямоугольном треуг. напротив угла 30 градусов лежит катет вдвое меньше гипотенузы, значит ВК = 10 : 2 = 5 см
и СД = ВК = 5 см (как противолежащие стороны параллелограмма КВСД)
Ответ СД = 5 см
По условию расстояние от точки М до всех вершин квадрата ABCD =5 см, => перпендикуляр ОМ проектируется в центр квадрата.
прямоугольный ΔМОС:
катет ОС=3 см (6/2) - (1/2) диагонали квадрата
гипотенуза МС=5 см - расстояние от точки М до вершин квадрата
катет ОМ найти - расстояние от точки М до плоскости квадрата
по теореме Пифагора:
5²=3²+ОМ²
ОМ=4
ответ: расстояние от точки М до плоскости квадрата 4 см
Начерти отрезок, первая точка - О, вторая точка - В, третья точка - А, четвертая точка - С
ОВ < ОА
ОС > ОА
ОВ > ОС
<span>AB=AC, углы DAB и DAC равны, сторона DA общая след. треугольники DAB и DAC равны. DC=DB, следовательно если опустить высоту на сторону ВС то это будет медиана,назовем ее DH. AH будет высотой в треугольноке ABC, по теореме Пифагора она равна a*sqrt(3)/2. По условию угол DHA равен 30, значит угол ADH равен 60, по теореме синусов получим что DH равно a. Находим площади бок поверхности: S(ADC)+S(ADB)+S(BDC)=DA*AC+DH*BC/2=a*a/2+a*a/2=a*a.</span>