Пусть двузначное число записано цифрами х и у. Десятков х, единиц у.
Это число (10х+у).
Утроенная сумма цифр 3·(х+у) равна этому числу (10х+у)
Прибавим 45, получим число
10х+у+45, которое записано цифрами ух, у - десятки, х- единицы.
10х+у+45=10у+х
Получаем систему двух уравнений:
Ответ Это число 27
Сумма цифр (2+7)=9
Утроенная сумма 3·98=27 равна самому числу
27+45=72 - число при перестановке цифр которого получится исходное число
A) - 1 * (- 1) - 5 = 3 * (- 1) - 1
1 - 5 = - 3 - 1
- 4 = - 4 - верно, значит - 1 является корнем уравнения
б)
0 = 1 - неверно, значит не является
Переведем все из правой части в левую, получится 3/5х+25+1/2х-10-5/х^2+25=0, приведем подобные, получится 3/5х+1/2х-5/х^2+40=0, умножим все на х, получится 3/5+1/2-5/х+40х=0, решим деление и умножим еще на х, получитя 0,6х+0,5х-5+40x^2=0, приведем подобные и разложим по степеням, получится 40х^2+1,1х-5=0, все умножим на 10 для удобности, получится 400х^2+11х-50=0, находим дискриминант Д=121-1600*(-50)=121+80000=80121, находим х, х1=-272/800=0,34, находим х2=294/800=0,3675
Ответ: х1=0,34; х2=0,3675