График состоит из двух частей... двух парабол (ветви вниз)))
ключевой точкой является х = -6 ---корень под-модульного выражения...
по определению модуля:
|x+6| = x+6 для x>= -6
|x+6| = -x-6 для x< -6
получим две функции (параболы):
y = -x^2 - 7x - 6 для x>= -6
y = -x^2 - 15x - 54 для x< -6
ровно три общие точки с прямой, параллельной оси ОХ,
получатся в "вершине левой параболы" и в точке х = -6
если х = -6, у = -(-6)^2 - 7*(-6) - 6 = -36+42-6 = 0
y=0 ---это первая прямая, удовлетворяющая условию, ---> <u>m=0</u>
для параболы y = -x^2 - 15x - 54 координаты вершины:
х0 = -b/(2a) = 15/(-2) = -7.5
y0 = -(-7.5)^2 - 15*(-7.5) - 54 = -(225/4)+(225/2)-54 =
= (450-225)/4 - 54 = (225/4) - 54 = (225 - 216)/4 = 9/4 = 2.25 ---> <u>m=2.25</u>
5x^2 + x + 2 = 0
D = 1 - 4*2*5 = 1 - 40 = - 39
Ответ первое
1) 2*3^(x+1)-6*3(x-1)-3^x=9
2*3*3^x-(6/3)*3^x-3^x=9
6*3^x-2*3^x-3^x=9
3* 3^x=9
3^x=3
<span>x=1</span>
Ответ:
10ю
Объяснение:
пусть x скорость лодки
8/x-2- против течения
8/x+2 по течению
составляем уравнение
8/x-2+12/x+2=2
8x+16+12x-24=2x(x^2-4)
решаем и получаем икс равный 10.
Как решаются квадратные неравенства?
Надо найти корни квадратной функции, понять, что именно в этих точках парабола(график любой квадратной функции - парабола) пересекает ось х и тогда легко решить само неравенство.
1) х² -9 <0 корни 3 и -3 -∞ -3IIIIIIIIIIIII3 +∞
-x² +6x +8 < 0 корни 2 и 4 -∞ 2IIIIIIIIII4 +∞
Ответ: (2;3)
2) 2х² -7х -9 > 0 корни 4,5 и -1 -∞IIIIIIIII-1 4,5IIIIIIIII+∞
x² +2x -3 < 0 корни -3 и 1 -∞ -3IIIIIIIIIII1 +∞
Ответ: (-3;-1)
3) (х+3)² -4 < 0, ⇒ x² +6x +9 - 4 < 0,⇒ x² +6x +5 < 0
x² +6x +5 < 0 корни -5 и -1 -∞ -5IIIIIIIIIII-1 +∞
Ответ: (-5;-1)
4) Чтобы определить область определения, надо помнить, что под квадратным корнем должно стоять число ≥ 0 и делить на 0 нельзя. Так что эти 2 условия :
2х² +11х - 6 ≥ 0, корни -6 и 0,5 -∞IIIIIIIIIII-6 0,5IIIIIIIIIIIIII+∞
х - 5 ≠ 0 x≠5
Ответ: х∈(-∞; - 6]∪[0,5;5)∪(5; +∞)