Х -скорость вело, х+12 -мото
5х=3(х+12)
2х=36
<span>х=18, х+12=30 (км/ч)</span>
Подкоренное выражение - число неотрицательное.
Решаем следующее неравенство:
(x + 4)/(x - 2) ≥ 0
Нули числителя: x = -4
Нули знаменателя: x = 2
|||||||+||||||||-4 - 2||||||+|||||||||||||||||
--------------●----------------------0------------------> x
x ∈ (-∞; -4] U (2; +∞)
Ответ: D(y) = (-∞; -4] U (2; +∞).
Y=2-5/x+2= -5/x+4
Итак, f(x)= -5/x+4
Если х1 <x2, то 5/x1 > 5/ x2( чем меньше знаменатель,тем больше дробь при одинаковом числителе), но -5/x1 < -5/x2(по свойству числовых неравенств) и, следовательно, -5/x1+4 < -5/x2+4. Значит, f(x1)< f(x2) ,и функция возрастает.
Третий член прогрессии A3=S3-S2=49-21=28
Сумма двух первых A1+A2=S2=A1(1+Q)=21
Сумма трёх первых А1+А2+А3=S3=A1(1+Q+Q^2)=49
(1+Q)*49=(1+Q+Q^2)*21
У нас получается квадратное урав-ние
A1=7, A2=14, Q=2
Седьмой член прогрессии равен
A7=A1*Q^6=7*2^6
Ответ:А7=448