Y'=(2/(x^2-4x+10))'= - 2(2x-4)/(x^2-4x+10)^2
- 2(2x-4)/(x^2-4x+10)^2=0 ОДЗ
- 2(2x-4)=0 x^2-4x+10≠0
2х=4 D=16-40= - 24 <0 - нет решения
х=2
Строим прямую интервалов. До х=2 функция будет иметь положительные значения, после отрицательные, значит точка х=2 является максимумов функции. Поэтому найдем у(2).
у(2)=2/(2^2-4*2+10)=2/6=1/3
Сначала выражаешь у, потом подставляешь цифры и рисуешь график. В графике ищешь точку пересечения и эта точка является ответом( то есть х=5; у=5)
Это возведение степени в другую степень.
(x³+x²-4x-4)/(x³+6x²+5x-12)>0
ОДЗ:
x³+6x²+5x-12≠0
x³-x²+7x²-7x+12x-12≠0
x²(x-1)+7x(x-1)+12(x-1)≠0
(x²+7x+12)(x-1)≠0
x1≠1
x2≠-4
x3≠-3
x³+x²-4x-4=0
x²(x+1)-4(x+1)=0
(x-2)(x+2)(x+1)=0
x1=2
x2=-2
x3=-1
__+__(-4)__-__(-3)_+__(-2)__-_(-1)_+__(1)__-__(2)___+___>
Ответ: x ∈ (-ω;-4)U(-3;-2)U(-1;1)U(2;+ω)